Search results for "Fermionic condensate"

showing 3 items of 3 documents

Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms

2014

Quantum simulation with ultracold atoms has become a powerful technique to gain insight into interacting many-body systems. In particular, the possibility to study nonequilibrium dynamics offers a unique pathway to understand correlations and excitations in strongly interacting quantum matter. So far, coherent nonequilibrium dynamics has exclusively been observed in ultracold many-body systems of bosonic atoms. Here we report on the observation of coherent quench dynamics of fermionic atoms. A metallic state of ultracold spin-polarised fermions is prepared along with a Bose-Einstein condensate in a shallow three-dimensional optical lattice. After a quench that suppresses tunnelling between …

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsOptical latticeMultidisciplinaryCondensed matter physicsHigh Energy Physics::LatticeGeneral Physics and AstronomyQuantum simulatorFOS: Physical sciencesGeneral ChemistryFermionGeneral Biochemistry Genetics and Molecular BiologyFermionic condensateQuantum stateUltracold atomQuantum Gases (cond-mat.quant-gas)Quantum mechanicsQuantum metrologyCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Boson
researchProduct

Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice

2006

Noise in a quantum system is fundamentally governed by the statistics and the many-body state of the underlying particles. Whereas for bosonic particles the correlated noise observed for e.g. photons or bosonic neutral atoms can still be explained within a classical field description with fluctuating phases, the anticorrelations in the detection of fermionic particles have no classical analogue. The observation of such fermionic antibunching is so far scarce and has been confined to electrons and neutrons. Here we report on the first direct observation of antibunching of neutral fermionic atoms. Through an analysis of the atomic shot noise in a set of standard absorption images, of a gas of…

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsOptical latticeMultidisciplinaryDegenerate energy levelsFOS: Physical sciencesQuantum phasesFermionCondensed Matter - Soft Condensed MatterFermionic condensateCondensed Matter - Other Condensed MatterQuantum mechanicsQuantum systemSoft Condensed Matter (cond-mat.soft)Fermi gasQuantum Physics (quant-ph)QuantumOther Condensed Matter (cond-mat.other)
researchProduct

Experiments on the dynamics of the Bose–Einstein condensate at finite temperatures

2009

This paper presents the results of our recent experiments on the finite-temperature Bose?Einstein condensate of 87Rb atoms in a magnetic trap, and is devoted to the study of the hydrodynamic properties and dynamics of an ultra-cold atomic gas near the critical temperature. Measurements of the aspect ratio of an expanding atomic cloud allow for verification of the condensate models and study of the interaction between condensed and non-condensed fractions of a finite-temperature sample.

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsBose gasCondensed Matter::OtherDynamics (mechanics)Condensed Matter PhysicsAspect ratio (image)Atomic and Molecular Physics and Opticslaw.inventionFermionic condensatesymbols.namesakeBose–Einstein statisticslawUltracold atomMagnetic trapsymbolsPhysics::Atomic PhysicsAtomic physicsMathematical PhysicsBose–Einstein condensatePhysica Scripta
researchProduct